Adaptive Importance Sampling for MarkovChains on General State Spaces 1
نویسندگان
چکیده
Adaptive importance sampling involves successively estimating the function of interest and then constructing an importance sampling scheme built on the estimate. Here, we investigate such a scheme used in simulations of Markov chains derived from particle transport problems. Previous work had shown that for nite state spaces the convergence was exponential, which veri ed computational experience. Here, these results are extended to general state spaces.
منابع مشابه
AN ADAPTIVE IMPORTANCE SAMPLING-BASED ALGORITHM USING THE FIRST-ORDER METHOD FOR STRUCTURAL RELIABILITY
Monte Carlo simulation (MCS) is a useful tool for computation of probability of failure in reliability analysis. However, the large number of samples, often required for acceptable accuracy, makes it time-consuming. Importance sampling is a method on the basis of MCS which has been proposed to reduce the computational time of MCS. In this paper, a new adaptive importance sampling-based algorith...
متن کاملFaster Optimization through Adaptive Importance Sampling
The current state of the art stochastic optimization algorithms (SGD, SVRG, SCD, SDCA, etc.) are based on sampling one active datapoint uniformly at random in each iteration. Changing these probabilities to better reflect the importance of each datapoint is a natural and powerful idea. In this thesis we analyze Stochastic Coordinate Descent methods with fixed non-uniform and adaptive sampling. ...
متن کاملParticle filtering for EEG source localization and constrained state spaces
...........................................................................................................................v List of Figures ..................................................................................................................viii List of Tables ...................................................................................................................x Chapt...
متن کاملHyperdynamics Importance Sampling
Sequential random sampling (‘Markov Chain Monte-Carlo’) is a popular strategy for many vision problems involving multimodal distributions over high-dimensional parameter spaces. It applies both to importance sampling (where one wants to sample points according to their ‘importance’ for some calculation, but otherwise fairly) and to global optimization (where one wants to find good minima, or at...
متن کاملHyperdynamic Sampling1
Sequential random sampling (‘Markov Chain Monte-Carlo’) is a popular strategy for many vision problems involving multimodal distributions over high-dimensional parameter spaces. It applies both to importance sampling (where one wants to sample points according to their ‘importance’ for some calculation, but otherwise fairly) and to global optimization (where one wants to find good minima, or at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997